Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell–specific abrogation of the glutamate dehydrogenase
نویسندگان
چکیده
In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell-specific GDH knockout mouse model, called βGlud1(-/-). The absence of GDH in islets isolated from βGlud1(-/-) mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1(-/-) islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1(-/-) mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1(-/-) islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1(-/-) islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1(-/-) islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.
منابع مشابه
Effects of Parathion Toxin on Glutamate Dehydrogenase Enzyme Activity and Diabetes Induction
Introduction: The main propose of this study was to determine the effect of parathion on activity of glutamate dehydrogenase (GDH) as a key enzyme in second phase secretion of insulin and to determine serum glucose levels in rats. Methods: To conduct the study, 35 rats were randomly divided into five groups (n=7). The serum glucose level of each group was measured and the total average was ca...
متن کاملDeletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis.
Insulin exocytosis is regulated in pancreatic ss-cells by a cascade of intracellular signals translating glucose levels into corresponding secretory responses. The mitochondrial enzyme glutamate dehydrogenase (GDH) is regarded as a major player in this process, although its abrogation has not been tested yet in animal models. Here, we generated transgenic mice, named betaGlud1(-/-), with ss-cel...
متن کاملA Role for Glutamate Transporters in the Regulation of Insulin Secretion
In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, gluta...
متن کاملThe Complex Mechanism of Glutamate Dehydrogenase in Insulin Secretion
Leucine is the only physiologic amino acid that can stimulate insulin release by itself, and a great deal of evidence suggests that leucine does this by allosterically activating glutamate dehydrogenase (GDH). GDH catalyzes the oxidative deamination of endogenous glutamate, which is present at a high concentration in the pancreatic b-cell. Studies that support this role of leucine include the f...
متن کاملEssential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion
Incretins (GLP-1 and GIP) potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS) that requires two critical processes: 1) generation of cytosolic glutamate through the malate-aspartate (MA) shuttle in glucose metabolism and 2) glutamate transport into insulin g...
متن کامل